

1. INTRODUCTION

Gestural composition of syllable position allophones in English (Sproat & Fujimura 1993)

- Onsets: clear /1/ ([1])
 - 1. consonantal gesture: tongue tip raising
 - 2. vocalic gesture: tongue dorsum lowering
- Codas: dark /1/ ([1])
 - 1. vocalic gesture: tongue dorsum retraction towards the uvular region
 - 2. consonantal gesture: tongue tip raising

F3 values in laterals (Recasens 2012, Stevens 1998)

- F3 is higher in dark /l/ than in clear /l/
- Difference attributed to closure fronting and front cavity configuration

2. HYPOTHESIS

- Vocal tract (VT): has 8 regions, each with a distinctive acoustic behavior
- Sensitivity Functions (SF) (Iskarous 2012)
 - formant change (F1, F2, F3) as a function of constriction location in the VT
- Constrictions:
 - Dark /l/: coronal and uvular
 - Clear /1/: coronal
- 2 maxima for F3 SF: each corresponding to a constriction location (uvular and coronal)

Figure 2: Left: Sagital sections of dark and clear /1/, Right: F1, F2, F3 Sensitivity Functions

• Prediction: For varieties of /l/ that have both a coronal and a uvular constriction \rightarrow F3 higher

Figure 1: Gestural composition and timing of lateral allophones

F3 VARIABILITY IN ALLOPHONES OF /1/: ACOUSTIC-ARTICULATORY RELATIONS ANISIA POPESCU UNIVERSITÉ PARIS DIDEROT anisia.popescu@univ-paris-diderot.fr

• This paper proposes an explanation for higher F3 in [1] based on F3 Sensitivity Functions

3. MATERIALS & METHODS

X-Ray Microbeam (XRMB) Wisconsin database

- Test hypothesis: Comparison of acoustic and articulatory data (M. Tiede)
- 6 speakers: 3 male, 3 female

Measures

- Formant values: taken at steady point of F3 during /1/
- Spatial coordinates of the tongue dorsum (TDx,TDy) at steady point of F3
 - TD retraction: movement along the Ox axis
 - TD proximity to the palate: movement along the Oy axis

Statistical analysis

- Formant values
 - Mixed effects models: Syllable position and Gender (fixed factor), Speaker (random factor)

• Articulator Position: Spatial Coordinates

- Linear regression models
- Mixed effects models

Spatial coordinate of Tongue Dorsum (TD)

Dorsum retraction

- Positive correlation (cor=0.6122177, p<2.2e16) between TD retraction and F3
 - F3 increases with TD retraction (on Ox axis)
- Linear Mixed Effects models and Linear Regression
 - strong effect of TD retraction (p<2e16)
 - no effect of TD proximity to the palate: expected because a velar constriction would lower F3

5. CONCLUSION AND FUTURE RESEARCH

6. REFERENCES

Fant, G. 1960, Acoustic Theory of Speech Production, De Gruyter, 2nd edition. 2. Iskarous, K., 2012, Articulatory to acoustic modeling, The Handbook of Laboratory Phonology, Oxford University Press, 472-483. 3. Recasens, D., 2012, A cross-language acoustic study of initial and final allophones of /l/, Speech Communication, 54, 368-383. 4. Sproat R., Fujimura O. (1993). Allophonic variation in American English /1/ and its implications for phonetic interpretation. J. of Phonetics, 21, 291-311. 5. Stevens, K., 1998, Acoustic Phonetics, The MIT Press. 6. Tiede, M., Matlab mview function, Haskins Lab.

- effect of Syllable position (p<2e16):
 - lower F3 for clear /1/
- effect of Gender (p=0.0388):
 - alltogether higher values for female speakers
- greater variability for male speakers
 - dark /1/ in onset \rightarrow confirmed by F2 values

Figure 4: F3 values given Syllable position and Gender

• The present study proposes an explanation for higher F3 values in [1], based on F3 sensitivity functions.

• Preliminary results (6 speakers) show that F3 increases with TD retraction in the production of /1/. The comparison will be extended to more speakers from the XRMB

• Male native speakers exhibit greater variability in the production of laterals.

• A future perception study will test whether F3 is a perceptual cue for differentiating syllable position allophones.